Yusuke TOKUNAGA Takahiro INOUE
A method for circular pattern recognition in a binary image and its implementation onto an FPGA are described. The proposed method is based on the template matching method using a modified matching degree. This method is implementable onto an FPGA and can realize a real-time system. The usefulness of the proposed method was confirmed by numerical simulations. The real-time performance was confirmed by experiments on the FPGA designed by using Verilog-HDL CAD tool.
This paper describes methods used in the design of a high speed burst modem applied for mobile communication systems. The modem has burst mode operations including burst mode AGC (automatic gain control), burst mode BTR (bit timing recovery), adaptive equalization, and diversity based on a selection algorithm to achieve a higher performance in multipath fading channels. Moreover, the performance of the burst modem, which is developed using analog signal processing devices, DSPs (digital signal processors), and FPGAs (field programmable gate arrays), is analyzed experimentally. Results show that the modem can suppress irreducible BER values below 1. 0e-6 and attains a 2 dB implicit diversity gain over multipath fading channels modeled by a two-ray impulse response system with independent Rayleigh fading.